If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+4g-96=0
a = 1; b = 4; c = -96;
Δ = b2-4ac
Δ = 42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*1}=\frac{-24}{2} =-12 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*1}=\frac{16}{2} =8 $
| 9^2+4g-96=0 | | 3x-7=9x+1 | | 2(4y-4)=40 | | 3(4z+4)=36 | | n^2=-17 | | r+6/r=-7 | | 8a+5=19+2(a-1) | | 2(x-6)=-(5x+10) | | 3(4x-4)+3(x-4)=(3x-1)+(3x-1)+(2x) | | 7x+35=105 | | x(2x-3)-3(5-x)=2(x-9)+3x+1 | | -54*(x-71)=x+46 | | (2a+3)-(4a-8)=8 | | 15x+32=180 | | ,x/3+9=21 | | x(2x-3)-3(5-x)=2(x-9)+3*1 | | 3(2-t)=-2(t-1) | | 3x+8-5x-5=2(x+6)-7 | | 9x-4/5=10 | | 5.9+(7.3*b)=b+11.5 | | 4(5w-3)-(w-1)=0 | | 5x+17=(10-2x)-3 | | 10/12(2x-1)+2/4(x+1)=5 | | 180=2x+2x+x | | x-x*0.15=50 | | 4(y+2)+y=6 | | 5(2x-3)=4x+3 | | 1/2t+4=-2 | | Y=3/8(c-8) | | x+x2+x2=180 | | X+15=3x-21 | | 3(3w+8)=21 |